Determination of Copper Content of Human Blood Plasma by an Ion Selective Electrode based on a New Copper-Selectophore

Authors

  • Farnoush Faridbod Center of Excellence in Electrochemistry, School of Chemistry, University of Tehran, Tehran, Iran
  • Mina Bahman Center of Excellence in Electrochemistry, School of Chemistry, University of Tehran, Tehran, Iran
Abstract:

A new selectophore was introduced for Cu2+ ions. Spectroscopic studies showed a selectivity of a new organic compound (L) toward copper ions and several transitional metal ions. Hence, L was utilized in designing several ion selective electrodes for these cations. In practice, Cu2+ ion selective electrode behaved Nernstian (slope of 27.95±0.3 mV decade-1) over a wide linear range of 1.0×10-6-1.0×10-2 mol L-1. Optimum performance of the indicator electrode was observed by a membrane containing 7% selectophore, 2% sodium tetraphenyl borate (NaTPB) as an ionic additive, 61% nitrobenzene (NB) as solvent mediator and 30% polyvinyl chloride (PVC). The sensor showed a short response time of about 20 s and an acceptable life time, the potentiometric response is independent on the pH of the solution in the range of 3.5-7. The optimized copper sensor was used for analysis of copper content of some blood plasma samples. The obtained results were in good agreements with ICP-OES method.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Lanthanum(III) Ion Selective Electrode Based on a New Ionophore

A PVC membrane electrode based on 1-[({[(butylsulfunyl)carbothioyl]disulfanyl} carbothioyl)sulfanyl]butane as a suitable ion carrier for determination of lanthanum(III) ion was prepared. This electrode revealedsuch a good selectivity toward La3+ ion over a wide variety of other metal ions. Some experimental parametersuch as membrane composition, nature, and amount of plasticizer, the amount of ...

full text

Ion-Selective Carbon Paste Electrode Based on 2-Amino-N-benzthioazolyl Benzamide (ABTB) for Determination of Copper (II) by Potentiometric Method

2-Amino-N-benzthioazolyl benzamide (ABTB) was synthesized, characterized and used for thefabrication of a potentiometric sensor for Cu2+ metal ions. The electrode exhibits linear response to Cu(II) over a wide concentration range (4.79×10 -8 – 1.85×10 -1 M) with Nernstian slope of 30 ± 1.5 mVper decade. The electrode can be used in the pH range from 2 to 9. It has a fast response time of about1...

full text

Selective Membrane Electrode for Bromide Ion Based on Aza Pyrilium Ion Derivative as a new Ionophore.

A highly selective electrode for Bromide ion based on aza pyrilium derivative as an excellentionophore is described.The sensor exhibits a good linear response with a slope of ( 60±1 ) mV per decadeover the concentration range of ( 1×10-3 – 9×10-6 M ) , and a detection limit of ( 3×10-6 M ) of Bromideions .The electrode response is independent of pH in the range of(4.0 –9.5).Selectivity coeffici...

full text

lanthanum(iii) ion selective electrode based on a new ionophore

a pvc membrane electrode based on 1-[({[(butylsulfunyl)carbothioyl]disulfanyl} carbothioyl)sulfanyl]butane as a suitable ion carrier for determination of lanthanum(iii) ion was prepared. this electrode revealedsuch a good selectivity toward la3+ ion over a wide variety of other metal ions. some experimental parametersuch as membrane composition, nature, and amount of plasticizer, the amount of ...

full text

Voltammetric determination of amitriptyline based on graphite screen printed electrode modified with a Copper Oxide nanoparticles

A novel electrochemical sensor was proposed for the determination of amitriptyline based on the copper oxide (CuO) nanoparticles modified graphite screen-printed electrode. CuO nanoparticles were used to enhance the surface area of the electrode and then improve the sensitivity of the electrochemical sensor. Amitriptyline electrochemical response characteristics of the modified electrode in a p...

full text

Voltammetric determination of amitriptyline based on graphite screen printed electrode modified with a Copper Oxide nanoparticles

A novel electrochemical sensor was proposed for the determination of amitriptyline based on the copper oxide (CuO) nanoparticles modified graphite screen-printed electrode. CuO nanoparticles were used to enhance the surface area of the electrode and then improve the sensitivity of the electrochemical sensor. Amitriptyline electrochemical response characteristics of the modified electrode in a p...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 12  issue 6

pages  881- 892

publication date 2020-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023